

Epoxy Resins and Composites with Self-Healing Ability

Eugenio Amendola e-mail eugenio.amendola@cnr.it

NanoInnovation 2016 20-23 Sept 2016 Rome - Italy

Self-healing materials

Healing in nature and extrinsic healing

2/25

POLIMERI

COMPOSITI

NanoInnovation2016, 20-23 Sept Rome - Italy

Self-healing materials

Intrinsic healing

A new class of self-healing materials can be obtained by adopting crosslinked polymers, with thermally reversible covalents bonds.

> Suitable reactive groups can be produced during fracture and can be repaired by applying a proper thermal stimulus.

From Scopus database	2016	42
june 2016.	2015	73
"epoxy + self-healing"	2014	83
	2013	52
	2012	51
	2011	48
	2010	32

Innovative approach

Source: Janet Sinn-Hanlon, Scott White, Ben Blaiszik

Thermosets with thermally reversible bonds

Research motivation

The most studied thermoreversible systems are based on Diels Alder reaction, because it ensures a high number of recycles.

In the case of Diels-Alder reaction, selection of furan and maleimide fixes the healing temperature in the processing window between 80-90 and 120°C.

Research motivation:

- Methodical investigation of molecular architecture;
- Assesment of self-healing features.

Design of polymeric structures

hybrid architecture

Design of networks with robust healing capabilities is based on hybrid architecture possessing both reverible bonds as well as irreversible ones.

First step: central core

NanoInnovation2016, 20-23 Sept Rome - Italy

COMPOSITI

Design of polymeric structures

suitable functional groups

Second step: reactive group

NanoInnovation2016, 20-23 Sept Rome - Italy

Variable D-A content

Thermosets vs. Thermoplastics

Thermoplastic and thermosetting polymers differs in their 3-D structures.

The following properties are mainly affected:

- thermo-mechanical stability
- glass transition
- melting/solubility

Thermoplastic and thermosetting are considered as DIFFERENT chemical categories

COMPOSITI

Variable D-A content

Thermosets vs. Thermoplastics

The presence of thermo-reversible covalent bonds (D-A) in the 3-D network induces reversible transormations.

External stimulii (heat energy) can trigger the thermomechanical behaviour from thermosetting to thermoplastic and viceversa. Thermally amphoteric features can be identified.

Variable D-A content

crosslinking density

ISTITUTO PER POLIMERI

COMPOSITI

Self healing epoxy resin

all mixture constituents

Nano Rome. 20-23 September 2016 Innovation

Conference & Exhibition

DDM

Jeffamine 500

Ο

0

– annealing @ 90°C

m ≈ 9

(l+n) ≈ 3.6

NH2

l n

Healing cycle:

Istep – high mobility @ 120°C

II step – crosslinking recovery

NanoInnovation2016, 20-23 Sept Rome - Italy

ĊH₃

 NH_2

10/25

Scratch damage recovery

crosslinked DGEBA

ISTITUTO PER I POLIMERI COMPOSITI E BIOMATERIALI

Scratch damage recovery

crosslinked 2Ph2Epo100

NanoInnovation2016, 20-23 Sept Rome - Italy

Nano Rome. 20-23 September 2016 Innovation

Conference & Exhibition

Scratch damage recovery

crosslinked 2Ph2Epo65

Nano Rome. 20-23 September 2016 Innovation

Conference & Exhibition

Fracture recovery

crosslinked 2Ph2Epo65

The healing treatment allows a complete recovery of mechanical stiffness (mean value 2.750 GPa) while the failure at break decreases.

Fracture behavior changes from ductile to brittle with increasing healing cycles.

Self-healing composite

Processing

Developed resin can be used according to traditional composite manufacturing processes :

 as matrix in the manufacturing of a small plane laminate (liquid infusion and prepregging;

Self-healing composite

ILSS test

NanoInnovation2016, 20-23 Sept Rome - Italy

Conference & Exhibition

Self-healing composite

NDT analysis CT scan

CT Scan after the last load cycle

$$\eta(\%) = \frac{ILSS^{healed}}{ILSS^{pristine}} \cdot 100$$

Healing Cycle	ILSS (Mpa)	Recovery (%)
0	54.1±1.1	100
1	51.4±5.1	95.1
2	44.2±4.9	81.7
3	37.0±5.2	68.4

NanoInnovation2016, 20-23 Sept Rome - Italy

17

Nano Rome. 20-23 September 2016 Innovation

Conference & Exhibition

Conclusions

Part I Material design

- Synthesis of Diels-Alder epoxy
- Formulation of selfhealing epoxy resin
- Composite lay-up

Part II

Self-healing assesment

- Scratch recovery
- Fracture recombination
- Unidirectional carbon fiber composites

Acknoweledgements

Credits to:

Prof. Michele Meo Dr. Gian Piero Malfense Fierro Prof. Igor Solodov Dr. Stefania Dello Iacono Dr. Mauro Zarrelli Dr. Alfonso Martone Dr. Michele Giordano Prof. Alfonso Iadonisi Dr. Maddalena Giordano The activities were performed in the frame of ALAMSA FP7 Grant Agreement 314768.

NanoInnovation2016, 20-23 Sept Rome - Italy

